
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Introduction into PM
Lecture 1

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Welcome

You will learn
how hardware works

how to actually build your own hardware device

the Rust programming Language

a little bit of low level C

We expect
to come to class

ask a lot of questions

maybe some work at home

2025 is an experiment - we will keep it chill

to the Proiectarea cu Microprocesoare engineering class

DISCLAIMER

These slides represent a summary.

The slides do not cover all the explanations, simulations, or demonstrations provided during the course.

The slides do not limit, in any way, the material required for the exam.

For the complete version, you are welcome to attend the course.

(copyright info) These slides may contain materials shared with my colleagues Alexandru Radovici, Dan Tudose, Alexandru Vaduva,

Razvan Tataroiu

ENG

Scientific understanding of the

natural world

Used to invent, design, and build

things

Used to solve problems and achieve

practical goal

Abstract level

Why PM

Computing systems with microprocessors > everywhere

Questions for an engineer:
What is inside a computing system?

How do the components interact?

How do I design a system that interacts with the physical environment?

How do I choose the best hardware option for an embedded system?

"Data-based decisions" – based on IoT infrastructure require:
Actual physical sensors

Lots of IoT custom hardware

Team

Our team

Daniel Rosner

Course Professor

Irina Niță

Lab Professor

Software

Irina Bradu

Lab Professor

Teodor Dicu

Lab Professor

Hardware

Despre Daniel Rosner

Cursuri
DEEA

PM

How To Build Your Cyber Security

Startup

VZ & PoliFest

Innovation Labs &
Concursuri (tech)

Tech area
Automotive

MedTech

Outline

Outline

Lectures
12 lectures

1 Q&A lecture for the project

Labs
12 labs

Project
Build a hardware device running software written

in Rust or C on a microcontroller-based board

The cost for the hardware is around 150 RON

Presented at PM Fair during the last week of the

semester

Scoring Structure

1 point for lab activity
1 point for lab assignment (final lab exam)

3 points PROJECT

2 points lectures activity (announced tests)

3 points @ Final Exam

Bo nus
+0.75 bonus for top 30 projects of the year (top 7%)

+0.75 bonus for top 10 projects of the year

Project

Structure
Documentation / Hard / Soft

PM-fair

Project scope
Needs to be approved by your laboratory teacher

It can not be super-simple!

(digital clock, digital thermometer)

A few reference points:
It can not be simpler than one laboratory

It can not be based on a 30 min youtube tutorial

Extra

Bonus for competition & activity results

Up to 1 point for results in the top at technical profile competitions

Up to 0.5 bonus points for involvement in student volunteer activities

Email in pre-session with Subject: Bonus_PM FirstName_LastName_32xCC

Equivalencies

Up to 3 points for results at technical competitions:

ACM (top 50%);

Innovation Labs (SemiFinals);

Suceava Hard and Soft (top 50%);

(Example) Innovation Labs

🚀 CV

🚀 Team-Work

🚀 Profesional Networking

🚀 Presentations skills

👾 Build your own start-up with a super support structure

 💹 500.000 EURO Investment Prize

👾 Summer Internship @ your own start-up

🤖 8 - 9 March - the largest, coolest, most fun Hackathon in Romania

PS: ⏱ Is it a good time considering how the IT market looks?

🎢 Yes! > It’s the best time:

📋 gain practical experience & boost your CV;

 📰 build a public profile & establish 👥 relationships with IL partner IT companies (e.g., Adobe, Keysight, NXP, UiPath, Stripe);

 🏋️‍♀️ improve your skills beyond coding (lowers the risk of being replaced by ChatGPT :))

Why join:

Apollo Guidance Computer

We choose to go to the moon

in this decade and do the other things, not because they are easy, but because they are hard, because that goal

will serve to organize and measure the best of our energies and skills, because that challenge is one that we are

willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

John F. Kennedy, Rice University, 1961

AGC

Frequency 2.048 MHz

World Length 15 + 1 bit

RAM 4096 B

Storage 72 KB

Software API AGC Assembly Language

This landed the moon eagle.

August 1966

DSKY

Simulator

Display and keyboard

https://svtsim.com/moonjs/agc.html

Where we are now

Embedded Systems

In general, they have a dedicated function.

Common constraints:
Real-time requirements

Fixed response time:
- Control (e.g., constant-time sampling)

- Safety (response within a limited time upon detection)

Limited resources (processing power/memory)

Robustness requirements (aka high uptime)

Example

Example controller

NXP S32ZE

STM32H

https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32z-and-s32e-real-time-processors/s32e2-safe-and-secure-high-performance-real-time-processors-with-actuation-support:S32E2
https://www.st.com/en/microcontrollers-microprocessors/stm32h757zi.html

Example ENTy

Example Companies

NXP

Infineon

Microchip

EPG

Renault

Continental

Viavi

Siemens

Emerson

GE

Honeywell

Thales

Hella

Bosch

What is a microprocessor?

Microcontroller (MCU)

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System

costs $0.1 - $25

annual demand is billions

Microprocessor (CPU)

high operating frequency (GHz)

limited number of I/O ports

usually requires an Operating System

costs $75 - $500

annual demand is tens of millions

Integrated in embedded systems for certain tasks General purpose, for PC & workstations

How a microprocessor works

Registers

r0

r1

r2

Processor

Memory Read/Write

Processing

add

sub

and

mov load store

Memory

word 0

word 1

word 2

LED controller

 Clock

This is a simple processor

8 bit processor

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

a simple 8 bit processor with a text display

Programming

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

Assembly
in Rust

1 use eight_bit_processor::print;

2

3 static hello: &str = "Hello World!";

4

5 #[start]

6 fn start() {

7 print(hello);

8 }

1 JMP start

2 hello: DB "Hello World!" ; Variable

3 DB 0 ; String terminator

4 start:

5 MOV C, hello ; Point to var

6 MOV D, 232 ; Point to output

7 CALL print

8 HLT ; Stop execution

9 print: ; print(C:*from, D:*to)

10 PUSH A

11 PUSH B

12 MOV B, 0

13 .loop:

14 MOV A, [C] ; Get char from var

15 MOV [D], A ; Write to output

16 INC C

17 INC D

18 CMP B, [C] ; Check if end

19 JNZ .loop ; jump if not

20

21 POP B

22 POP A

23 RET

Demo
Start

a working example for the previous code

https://schweigi.github.io/assembler-simulator/

Microprocesors VS Microcontrollers

Microcontroller

Microprocessor

A microcontroller is a small computer on a single integrated circuit (IC).

A microprocessor is a computer central processing unit (CPU) on a single integrated circuit (IC).

Comparation

Characteristic Microcontroller Microprocessor

Function Includes CPU, mem & I/O Includes only the CPU

Cost >> cheaper >> expensive

Complexity >> simple >> complex

Use case Incorporated devices PCs, Servers, Laptops

Graphic representation

© https://www.electronicsforu.com/resources/difference-between-microprocessor-and-microcontroller

https://www.electronicsforu.com/resources/difference-between-microprocessor-and-microcontroller

Note: why a motherboard

Note: von Neumann VS Harvard

von Neumann, where memory contains both instructions and data.

Today’s PCs are all von Neumann

Harvard, where memory access is done on separate buses, one for data, one for instructions.

AVR, PIC, DSPs and many microcontrollers are Harvard

Note: ARM is von Neumann with some * Note: GPUs (NVIDIA) are mixed arhitecture

From the point of view of memory access, there are 2 architectures:

Note: microcontrollers - general observations

Microcontroller (MCU) – a mini computer on a single
silicon chip that integrates:

 Processor
 Data memory
 Program memory
 Peripherals

In contrast to a microprocessor that needs other external chips for memory, control, peripherals

Under the microscope

© https://www.bunniestudios.com/blog/?page_id=40

https://www.bunniestudios.com/blog/?page_id=40

(extra)

©

https://www.tomshardware.com/news/amd-

shares-new-second-gen-3d-v-cache-chiplet-

details-up-to-25-tbs

Types

Microcontrolere

Biți Memorie Setinstrucțiuni Arhitectură

8 16 32 Integrată Externă CISC RISC von Neumann Harvard

Tipuri

8051 AVR PIC Xtensa ARMRISC-V PSoC STM MSP …

How to choose the right one ?

 ? Energy consumption
 ? Operating frequency
 ? IO Pins & Supported Peripheral / Interface Types
(discussion)
 ? Memory
 ? Internal functions
 ? Software availability & support!

Hello World on AVR in C

Note: the above code can toggle an LED on / off every 500ms

1 #include <avr/io.h>

2 #include <util/delay.h>

3

4 #define F_CPU 12000000UL //MCU clock frequency

5

6 int main()

7 {

8 DDRC = (1 << PC0); //Set pin 0 of PORT C as output

9 //DDRC = Data Direction Register for PORT C

10 while(1)

11 {

12 PORTC ^= (1 << PC0); //Toggle pin 0 of PORT C (XOR)

13 _delay_ms(500);

14 }

15 }

Let’s go lower level

1 //00000000 <__vectors>:

2 //__vectors():

3 0: 0c 94 3e 00 jmp 0x7c ; 0x7c <__ctors_end> //reset

4 4: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

5 8: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

6 c: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

7 10: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

8 14: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

9 18: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

10 1c: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

11 20: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

12 24: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

13 28: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

14

15 ..

16

17 60: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

18 64: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

19 68: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

20 6c: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

21 70: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

22 74: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

23 78: 0c 94 48 00 jmp 0x90 ; 0x90 <__bad_interrupt>

24 0000007c <__ctors_end>:

Next code

1 //__trampolines_start():

2 7c: 11 24 eor r1, r1 ; r1 = 0 //program jumps here at reset

3 7e: 1f be out 0x3f, r1 ; SREG = r1

4 80: cf ef ldi r28, 0xFF ; 255

5 82: d8 e0 ldi r29, 0x08 ; 8

6 84: de bf out 0x3e, r29 ; SPH = 0x8 //stack pointer on the last RAM address - 0x08FF for 328P

7 86: cd bf out 0x3d, r28 ; SPL = 0xFF. //stack Pointer High and Low - to get a 16b address on a 8bit MCU

8 88: 0e 94 4a 00 call 0x94 ; 0x94 <main>

9 8c: 0c 94 59 00 jmp 0xb2 ; 0xb2 <_exit> 00000090

10

11 //<__bad_interrupt>: __vector_22():

12 90: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>. //any interrupt triggers a reset

We get to the code

1 94: 38 9a sbi 0x07, 0 ; DDRC = 0x01 //DDRC |= (1 << PC0);

2

3 96: 91 e0 ldi r25, 0x01 ; r25 = 1

4 98: 88 b1 in r24, 0x08 ; r24 = PORTC //from here PORTC ^= (1 << PC0);

5 9a: 89 27 eor r24, r25 ; r24 = r24 ^ 1

6 9c: 88 b9 out 0x08, r24 ; PORTC = r24

7

8 9e: 2f e9 ldi r18, 0x9F ; 159 //from here _delay_ms():

9 a0: 36 e8 ldi r19, 0x86 ; 134

10 a2: 81 e0 ldi r24, 0x01 ; 1

11 a4: 21 50 subi r18, 0x01 ; 1

12 a6: 30 40 sbci r19, 0x00 ; 0

13 a8: 80 40 sbci r24, 0x00 ; 0

14 aa: e1 f7 brne .-8 ; 0xa4 <main+0x10>

15 ac: 00 c0 rjmp .+0 ; 0xae <main+0x1a>

16 ae: 00 00 nop b0: f3 cf rjmp .-26 ; 0x98 <main+0x4> //jumps back to the loop (98)

Real World Microcontrollers
Intel / AVR / PIC / TriCore / ARM Cortex-M / RISC-V rv32i(a)mc

Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, 2nd Edition

Chapter 1 - Introduction

Chapter 2 - Technical Overview

for this section

Intel

Vendor Intel

ISA 8051, 8051

Word 8 bit

Frequency a few MHz

Storage ?

Variants 8048, 8051

AVR

Authors Alf-Egil Bogen and Vegard Wollan

Vendor Microchip (Atmel)

ISA AVR

Word 8 bit

Frequency 1 - 20 MHz

Storage 4 - 256 KB

Variants ATmega, ATtiny

Board

probably Alf and Vegard’s RISC processor

PIC

Vendor Microchip

ISA PIC

Word 8 - 32

Frequency 1 - 20 MHz

Storage 256 B - 64 KB

Variants PIC10, PIC12, PIC16, PIC18, PIC24, PIC32

Peripheral Interface Controller / Programmable Intelligent Computer

TriCore

Vendor Infineon

ISA AURIX32

Word 32 bit

Frequency hundreds of MHz

Storage a few MB

Variants TC2xx, TC3xx, TC4xx

ARM Cortex-M

Vendor
Qualcomm, NXP, Nordic Semiconductor,

Broadcom, Raspberry Pi

ISA

ARMv6-M (Thumb and some Thumb-2)

ARMv7-M (Thumb and Thumb-2)

ARMv8-M (Thumb and Thumb-2)

Word 32

Frequency 1 - 900 MHz

Storage up to a few MB

Variants M0, M0+, M3, M4, M7, M23, M33

Advanced RISC Machine

ARM Cortex-M
Instruction Set

Fun Facts

M0/M0+ has no div

M0 - M3 have no floating point

M23 and M33 have security

extensions

what the MCU can do

RISC-V rv32i(a)mc

Authors University of California, Berkeley

Vendor Espressif System

ISA rv32i(a)mc

Word 32 bit

Frequency 1 - 200 MHz

Storage 4 - 256 KB

Variants rv32imc, rv32iamc

Fifth generation of RISC ISA

RP2350
ARM Cortex-M33, built by Raspberry Pi

Bibliography

Raspberry Pi Ltd, RP2350 Datasheet

Chapter 1 - Introduction

Chapter 2 - System Description

Section 2.1 - Bus Fabric

for this section

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

RP2350

Vendor Raspberry Pi

Variant ARM Cortex-M33 / Hazard3 RISC-V

ISA ARMv8-M / rv32iamc

Cores 2

Word 32 bit

Frequency up to 150 MHz

RAM 520 KB

Boards

Raspberry Pi Pico 2 (W)

the MCU that use RP2350

The Chip

GPIO: General Purpose Input/Output

SWD: Debug Protocol

DMA: Direct Memory Access

Datasheet RP2350

Peripherals

SIO Single Cycle I/O (implements GPIO)

PWM Pulse Width Modulation

ADC Analog to Digital Converter

(Q)SPI (Quad) Serial Peripheral Interface

UART Universal Async. Receiver/Transmitter

RTC Real Time Clock

I2C Inter-Integrated Circuit

PIO Programmable Input/Output

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Pins

...

have multiple functions

The Bus
that interconnects the cores with the peripherals

Conclusion

How a processor functions

Microcontrollers (MCU) / Microprocessors (CPU)

Microcontroller architectures

ARM Cortex-M

RP2040

we talked about

Atmega328P

Vendor Arduino & others

Variant 328p/ 328P

Cores 1

Word 8 bit

Frequency up to 16 MHz

RAM 2 KB

Storage 32KB Flash & 1 KB EEPROM

Boards

Example: Arduino Uno

the MCU that use 328P - many :)

The Chip

1. Actually 2-wire serial interface ↩

Peripherals

PWM Pulse Width Modulation

ADC Analog to Digital Converter

SPI Serial Peripheral Interface

UART Universal Async. Receiver/Transmitter

RTC Real Time Clock

I2C Inter-Integrated Circuit

PIO Programmable Input/Output

[1]

Pins
have multiple functions

The Bus For more details - check-out the 328P DataSheet

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

Embedded Software

Why Embedded Software is Different

It tends to be very application-specific
It comes in the form of a blob, which contains data, configuration, application and drivers

While some operating systems exist for embedded devices, they are very rare

It uses specialized hardware to achieve its goal
DSPs for audio/video processing

On-chip/off-chip peripherals (ADCs/DACs for data acquisition, audio playback, capacitive touch)

Displays, buttons for user interfaces

It is much more tightly coupled to hardware than PC/server
software

This allows for smaller binaries but the trade-off is less portable code

It must be designed in parallel with the hardware

Hardware Programming & Debugging Devices

Software tools + hardware tools:

IDE

compiler

programming device/ debugger

hardware device

Extras:

oscilloscope

waveform analyzer

power analyzer

1. https://wiki.dave.eu/index.php/MITO8M-AN-

001:_Advanced_multicore_debugging,_tracing,_and_energy_profiling_with_Lauterbach_TRACE32 ↩

[1]

https://wiki.dave.eu/index.php/MITO8M-AN-001:_Advanced_multicore_debugging,_tracing,_and_energy_profiling_with_Lauterbach_TRACE32
https://wiki.dave.eu/index.php/MITO8M-AN-001:_Advanced_multicore_debugging,_tracing,_and_energy_profiling_with_Lauterbach_TRACE32

Program Flow - ARM vs AVR

What ARM AVR

Program Load Using an external programmer or bootloader (same)

Execution

launch

When the microcontroller is reset, execution starts

from a preset address

(same)

Execution

threads

Supports multiple threads, multiple values for the

Program Counter PC (R15)

Single thread, controlled by PC

(Program Counter)

In/ Out

interaction

Memory mapped I/O Port-mapped I/O

The code

How do we program a microcontroller?
1. The code is compiled and a binary file containing the machine code instructions is produced.

.UF2 / .BIN / .HEX on ARM

.HEX on AVR

2. The binary must end up in the microcontroller’s program memory (Flash)

Using an external programmer (In-System Programmer or JTAG)

using a bootloader

The bootloader takes up space in the program memory for AVR (for RPI it resides in ROM).

3. After programming, a RESET is automatically applied to the processor, and it starts execution from the start

address.

Depending on the configuration (eg where the bootloader is written), it may not be 0.

1. ARM microcontrollers are able to execute code from RAM ↩

[1]

In / Out

No
screen :)

console :)

Yes
LEDs

LCD

Serial interface

Hardware Debugger

Variables

Allocation
Local variables > stack

Be careful when using recursive functions

Global variables > data

Dynamic variables > heap

Dynamic variables require an allocator - might not be ideal on

an AVR / when you are low on memory

Const > flash memory (program memory -

written at compile time)

Const on AVR can also be stored on EEPROM (slow)

Memory on AVR - 328P example

ATmega328P Memory Details
Memory Type Size Purpose

Flash (ROM) 32 KB Stores program instructions (non-volatile).

SRAM (RAM) 2 KB Stores variables, stack, heap, and registers.

EEPROM 1 KB Stores persistent data (non-volatile, writable).

General Purpose Registers 32 Bytes Fast-access CPU registers.

I/O Registers 64 Bytes Port-mapped peripheral control registers.

Extended I/O Registers 160 Bytes Memory mapped peripheral control registers.

Memory on ARM - RP2350 example - M33 based

RP2350 Memory Breakdown
Memory Type Size Purpose

XIP Flash Up to 16 MB Stores program code (external QSPI Flash).

SRAM (On-chip) 520 KB Stores stack, heap, variables, and data.

Boot ROM 32 KB Stores bootloader, factory firmware.

OTP 8 KB One-time-programmable (Product id, cryptographic keys).

Peripheral Space Varies Memory-mapped I/O for GPIO, UART, SPI, DMA.

Registers 16 + control registers General purpose + program flow + special purpose

1. XIP = Execute in Place (without this, the code would need to be copied in RAM first) ↩

[1]

Let’s see some code

 What is the resulting value?

 it depends on the compiler and on the architecture

 Solution

1 #include <stdio.h>

2 #include <stdint.h>

3

4 void printBinary(uint32_t num) {

5 for (int i = 31; i >= 0; i--) {

6 printf("%d", (num >> i) & 1);

7 if (i % 8 == 0) printf(" ");

8 }

9 printf("\n");

10 }

11

12 int main()

13 {

14 uint8_t a;

15 uint32_t b;

16

17 a = 0x01;

18 b = a << 24;

19

20 printBinary(a);

21 printBinary(b);

22

23 return 0;

24 }

1 b = (uint32_t) a << 24;

2 //b will be 00000001 00000000 00000000 00000000

3 //same result on any architecture and compiler;

Variables in C

Variables in Rust

1 #include <stdio.h>

2

3 int8_t, uint8_t

4 int16_t, uint16_t

5 int32_t, uint32_t

1 u8, u16, u32, u64, u128

2 i8, i16, i32, i64, i128

3 usize //word size (eg - 32b for 32b processor)

4 isize //word size (eg - 32b for 32b processor)

5

6 //NOTES:

7 char // 4 bytes != u8 //UTF-8 not ASCII like in C

8 b"str" //ASCII string

9 "str" UTF-8 string

10

11 's' // char

12 b's' // u8

Why Rust-lang

The tagline of Rust is No Undefined Behavior.
no null reference; the Rust compiler explicitly asks developers to check this;

no implicit cast, even adding a u32 to a u8 must be casted;

safe access to shared data across threads verified at compile time;

uses type states to move runtime checks to compile time and force developers to check;

clearly defined data types, unlike i8 or u128;

safe unions, that provide a discriminant to prevent wrong interpretation of data;

clear code organization into crates and modules;

backward compatibility at crate level.

